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a b s t r a c t 

In this paper we tackle distributed detection of a non-cooperative target with a Wireless Sensor Network 

(WSN). When the target is present, sensors observe an unknown random signal with amplitude attenu- 

ation depending on the distance between the sensor and the target (unknown) positions, embedded in 

white Gaussian noise. The Fusion Center (FC) receives sensors decisions through error-prone Binary Sym- 

metric Channels (BSCs) and is in charge of performing a (potentially) more-accurate global decision. The 

resulting problem is a one-sided testing with nuisance parameters present only under the target-present 

hypothesis. We first focus on fusion rules based on Generalized Likelihood Ratio Test (GLRT), Bayesian 

and hybrid approaches. Then, aimed at reducing the computational complexity, we develop fusion rules 

based on generalizations of the well-known Locally-Optimum Detection (LOD) framework. Finally, all the 

proposed rules are compared in terms of performance and complexity. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation and related works 

Wireless sensor networks (WSNs) have attracted significant at-

ention due to their potential in providing improved capabilities

n performing detection and estimation [1,2] , reconnaissance and

urveillance, with a wide range of applications, comprising battle-

eld surveillance, security, traffic, and environmental monitoring

3] . Distributed detection is among the fundamental tasks that a

SN needs to accomplish which has been investigated in the re-

ent years [4] . 

Due to bandwidth and energy constraints, it is often assumed

hat each sensor quantizes its own observation with a single bit

efore transmission to the FC. This may be the result of a dumb

uantization [5,6] or represent the estimated decision regarding

he detection event [7–10] . In the latter case, the decisions of in-

ividual sensors are collected by the FC and combined according

o a specifically-designed fusion rule aiming at improved detection

erformance. In [11] , the optimum strategy to fuse the local de-

isions at the FC has been obtained under the conditional inde-

endence assumption. The optimal fusion rule in both Neyman–
∗ Corresponding Author. 
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earson and Bayesian senses, which is derived from the likelihood

atio test [12] , is commonly referred to as Chair-Varshney (CV) rule.

t amounts to a threshold detector on the weighted sum of binary

ensor detections, with each weight depending on sensor detection

nd false alarm probabilities. 

Unfortunately, the local detection probability is seldom known

r difficult to estimate when the detection event relates to reveal-

ng a target described by a spatial signature. In fact, in the lat-

er case the detection probability depends on the (unknown) con-

titutive parameters of the target to be detected, such as the av-

rage power and the target location (see Fig. 1.1 ). Without the

nowledge of the local detection probabilities, the optimal fusion

ule becomes impractical and an attractive alternative is the so-

alled Counting Rule (CR) test, i.e. the FC counts the number of lo-

al detections in the WSN and compares it with a threshold [13] .

 performance analysis of the CR has been provided in [14] for

 WSN with randomly deployed sensors. Unfortunately, CR suf-

ers from performance degradation when trying to detect spatial

vents. Indeed, though CR is a very reasonable approach arising

rom different rationales [4,7,8] , it does not make any attempt to

se information about the contiguity of sensors that declare (po-

ential) target presence. Therefore, based on these considerations,

everal studies have focused on design of fusion rules filling the

erformance gap between the CV rule and the CR. 

In [15] a two-step decision-fusion algorithm is proposed, in

hich sensors first correct their decisions on the basis of neigh-

oring sensors, and then make a collective decision as a net-

http://dx.doi.org/10.1016/j.inffus.2016.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
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Fig. 1.1. Distributed detection of a non-cooperative target with spatial signature: 

system model. 
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1 The Gaussian assumption for measurement noise is only made here for the sake 

of simplicity; generalization of the present framework to non-Gaussian noise is pos- 

sible and will be object of future studies. 
work. It is shown that in many situations relevant to random sen-

sor field detection, the local vote correction achieves significantly

higher target detection probability than decision fusion based on

the CR. Also, for the proposed approach, an explicit formula for

FC threshold choice (viz. false-alarm rate determination) was pro-

vided, based on normal approximation of the statistic under the

target-absent hypothesis. A simple and more accurate alternative

for threshold choice based on the beta-binomial approximation

is proposed in [16] . In [17] the Generalized Likelihood Ratio Test

(GLRT) for the distributed detection of a target with a deterministic

Amplitude Attenuation Function (AAF) and known emitted power

is developed, and its superiority is shown in comparison to the CR.

It is worth noticing that a similar model assuming a deterministic

AAF was employed to analyze the (approximate) theoretical per-

formance of CR in [14] . Differently, a stochastic AAF (subsuming

the Rayleigh fading model) is assumed in [18] and [19] , the lat-

ter being able to account for possible amplitude fluctuations. In

the same works, also a scan statistic and Bayesian-originated ap-

proaches were obtained and compared with existing alternatives.

In both works, the average emitted power of the target is however

assumed known . 

However, in many cases it is of practical importance to assume

that also the (average) target emitted power is not available at the

FC, which well fits the case of an uncooperative target, i.e. there

is no preliminary agreement between target and sensors in or-

der to exchange the information related to the (average) emitted

power or make it possible to be estimated. Examples of practi-

cal interest for an uncooperative target are the primary user in a

cognitive-radio system or an oil-spill source measured by an un-

derwater sensor network. To the best of authors’ knowledge, a few

works have dealt with the latter case. In [20] , a GLRT was derived

for the case of unknown target position and emitted power and

compared to the CR, the CV rule and a GLRT based on the aware-

ness of target emitted power. It has been shown that the loss in-

curred by the proposed GLRT is marginal when compared to the

“power-clairvoyant” GLRT. Differently, in [21] an asymptotic locally-

optimum detector was obtained for a WSN with (random) sensors

positions following a Poisson point process. Remarkably, the afore-

mentioned study accounted for unknown emitted power. Unfortu-

nately, the deterministic AAF there employed implicitly assumed

that FC has available the target position, thus limiting its applica-
ility, though some numerical analysis to investigate mismatched

AF performance was provided. 

.2. Summary of contributions 

In this paper, we focus on decentralized detection of a non-

ooperative target with a spatially-dependent emission (signature).

e consider the practical setup in which the received signal at

ach individual sensor is embedded in white Gaussian noise 1 

nd affected by Rayleigh fading, with an AAF depending on the

ensor-target distance (viz. stochastic AAF). The Rayleigh fading

ssumption is employed here to account for fluctuations of the

ransmitted signal due to multipath propagation. For energy- and

andwidth-efficiency purposes, each sensor performs a local deci-

ion on the absence/presence of the target and forwards it to a FC,

hich is in charge of providing a more accurate global decision.

ith reference to this setup, the main contributions of the present

ork can be summarized as follows: 

• We first review the scenario where the emitted power is avail-

able (thus the sole target position is unknown) at the FC, in

order to understand the basics of the problem under investi-

gation and list various alternatives employed in the open lit-

erature, such as GLRT [17] and Bayesian approaches. Then we

switch to the more realistic case of unknown target location

and power, which is typical in surveillance tasks. In this con-

text we provide a systematic analysis of several detectors based

on: ( i ) GLRT [20] , ( ii ) Bayesian approach and ( iii ) hybrid combi-

nations of the two (for sake of completeness). 
• In order to reduce the computational complexity required by

these approaches, we also develop two novel sub-optimal fu-

sion rules based on the locally-optimum detection framework

[22] . The first relies on Bayesian assumption for the sole target

position, whereas the latter obviates the problem by resorting

to Davies rationale [23] . The design and the analysis of such

practical rules and their comparison to the aforementioned al-

ternatives represents the main contribution of this work. We

underline that, since a uniformly most powerful test does not

exist for our problem (because of the unknown parameters),

nothing can be said in advance on their relative performance.

All the aforementioned detectors are also compared in terms of

computational complexity; 
• The scenario at hand is then extended to the demanding case of

imperfect reporting channels (typical for battery-powered sen-

sors implementing low-energy communications), modeled as

Binary Symmetric Channels (BSCs). The proposed fusion rules

are then extended to take into account the (additional) report-

ing uncertainty, under the assumption of known Bit-Error Prob-

abilities (BEPs). 
• Finally, simulation results are provided to compare all the con-

sidered rules in some practical scenarios and to underline the

relevant trends. 

.3. Paper organization and manuscript notation 

The remainder of the paper is organized as follows: in

ection 2 we describe the system model, with reference to local

ensing and FC modeling. In Section 3.1 we recall and discuss the

roblem of distributed detection under the assumption of a known

verage target emitted power. Differently, Section 3.2 is devoted to

he development of fusion rules which deal with the additional un-

ertainty of unknown power. Then, in Section 3.3 we extend the
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2 We recall that in the case of composite hypothesis testing problems the uni- 

formly most powerful test seldom exists [12] . In the latter case, alternative ap- 

proaches such as the GLRT may be pursued. 
btained fusion rules to the more general case of imperfect report-

ng channels between the sensors and the FC. All the considered

ules are compared in terms of complexity in Section 3.4 . Further-

ore, in Section 4 a set of simulations is provided to compare the

eveloped rules and assess the loss incurred by non-availability of

mitted power. Finally, some conclusions are drawn in Section 5 .

roofs and derivations are confined to a dedicated Appendix. 

Notation - Lower-case bold letters denote vectors, with a n being

he n th element of a ; upper-case calligraphic letters, e.g. A , denote

nite sets; E {·} , var{ ·}, ( ·) T , and ‖·‖ denote expectation, variance,

ranspose and Euclidean norm operators, respectively; P ( ·) and p ( ·)
enote probability mass functions (pmfs) and probability density

unctions (pdfs), while P ( ·| ·) and p ( ·| ·) their corresponding condi-

ional counterparts; N (μ, σ 2 ) denotes a Gaussian pdf with mean

and variance σ 2 ; Q (·) is the complementary cumulative distri-

ution function (ccdf) of a standard normal random variable; fi-

ally the symbols ∝ and ∼ mean “statistically equivalent to” and

distributed as”, respectively. 

. System model 

We consider a scenario where K sensors are deployed in a

urveillance area to monitor the absence ( H 0 ) or presence ( H 1 ) of

 target of interest having a spatial signature. The measurement

odel of the generic sensor is described in Section 2.1 . Then, we

ntroduce the local decision procedure employed (independently)

y each sensor in Section 2.2 . Finally, in Section 2.3 we describe

he problem of fusing sensors decisions at the FC. 

.1. Sensing model 

When the target is present in the surveillance area (i.e.

 1 ), we assume that its radiated signal is isotropic and experi-

nces (distance-depending) path-loss, Rayleigh fading, and Additive

hite Gaussian Noise (AWGN), before reaching individual sensors.

n other terms, the sensing model for k th sensor ( k ∈ { 1 , . . . , K} )
nder H 1 is [19] 

 k = ξk g(x T , x k ) + w k , (2.1)

here y k ∈ R is signal measured by k th sensor and w k ∼ N (0 , σ 2 
w,k 

)

enotes the corresponding measurement noise. Furthermore, x T ∈
 

d denotes the unknown position of the target (in d -dimensional

oordinates), while x k ∈ R 

d denotes the known k th sensor position

in d -dimensional coordinates). The positions x T and x k uniquely

etermine the value of g ( x T , x k ), generically denoting the AAF. Fi-

ally ξ k is a Gaussian distributed random variable, ξk ∼ N (0 , σ 2 
s ) ,

odelling fluctuations in the received signal strength at k th sen-

or. Due to spatial separation of the sensors, we assume that the

oise contributions w k s and the fading coefficients ξ k s are both

tatistically independent. Depending on the peculiar scenario be-

ng investigated, σ 2 
s will be assumed either known ( Section 3.1 ) or

nknown ( Section 3.2 ). 

Then, the measured signal y k is distributed under hypotheses

 0 and H 1 as 

 k | H 0 ∼ N (0 , σ 2 
w,k ) , y k | H 1 ∼ N 

(
0 , σ 2 

s g 2 (x T , x k ) + σ 2 
w,k 

)
, 

(2.2) 

espectively. With reference to the specific AAF, two common ex-

mples [15,19] are the power-law attenuated model 

(x T , x k ) � 

1 √ 

1 + 

( ‖ x T −x k ‖ 
η

)α , (2.3)

nd the exponentially attenuated model 

(x T , x k ) � 

√ 

exp 

(
−‖ 

x T − x k ‖ 

2 

η2 

)
. (2.4)
n Eqs. (2.3) and (2.4) the parameter η controls the (approximate)

patial signature extent produced by both AAFs, while α is a posi-

ive coefficient that dictates the rapidity of signal decay as a func-

ion of the distance in the case of power-law AAF. 

.2. Local decision approach 

We assume that sensors make their local decisions individually

ithout collaboration. Then, each sensor is faced to tackle the fol-

owing composite hypothesis testing: 

H 0 : y k = w k 

H 1 : y k = ξk g(x T , x k ) + w k 
(2.5) 

ndeed, although the sensor may be aware of its own position x k ,

he target position x T is clearly unknown , independently from the

vailability of the average emitted power σ 2 
s . Nonetheless, for this

pecific sensing model it can be shown that this difficulty can be

legantly circumvented. To this end, we consider a local decision

rocedure based on the well-known Neyman–Pearson lemma [12] .

ore specifically, we consider the local Log Likelihood-Ratio (LLR)

f k th sensor, denoted with λk , whose explicit expression is: 

k � ln 

[
p(y k |H 1 ) 

p(y k |H 0 ) 

]
= 

1 

2 

ln 

[
σ 2 

w,k 

σ 2 
w,k 

+ σ 2 
s g 2 (x T , x k ) 

]
+ 

σ 2 
s g 2 (x T , x k ) 

σ 2 
w,k 

[
σ 2 

w,k 
+ σ 2 

s g 2 (x T , x k ) 
] y 2 k ,

(2.6) 

ast equation reveals that the LLR is an increasing function of y 2 
k 
,

rrespective of the target average emitted power σ 2 
s and the target

ocation x T . Therefore, by Karlin-Rubin theorem [24] , the following

nergy test 

 

2 
k 

ˆ H = H 1 

≷ 

ˆ H = H 0 

γk (2.7) 

s Uniformly Most Powerful 2 (UMP) in a local sense. Also, γ k is

 suitable threshold chosen to ensure a certain false-alarm rate

t the sensor (in Neyman-Pearson approach) or to minimize the

rror-probability (in the Bayesian framework). In view of the afore-

entioned considerations, in what follows we will assume that

ach sensor implements its local UMP test based on its (local) mea-

urement y k . 

Furthermore, we observe that the performance of the energy

est in Eq. (2.7) is easily obtained explicitly, in terms of the detec-

ion ( P d,k � Pr { λk ≥ γk |H 1 } ) and false-alarm ( P f,k � Pr { λk ≥ γk |H 0 } )
robabilities as [12] 

 d,k = 2 Q 

( √ 

γk 

σ 2 
w,k 

+ σ 2 
s g 2 (x T , x k ) 

) 

; P f,k = 2 Q 

( √ 

γk 

σ 2 
w,k 

) 

. 

(2.8) 

wo examples of a P d, k field (that is, the detection probability vs.

he generic sensor position x for fixed target position and false-

larm probability) are depicted in the top plots of Figs. 2.1 and 2.2 ,

or the power-law and exponential AAFs, respectively, with refer-

nce to a 2-D square surveillance area of length L = 1 . Also, we

ssumed x T = [ 0 . 1 0 . 5 ] 
T 
, η = 0 . 5 , α = 2 , σ 2 

w,k 
= 1 , σ 2 

s = 1 and

 f,k = 0 . 05 (from which γ k is easily deduced, cf. Eq. (2.8) ). Simi-

arly, in the bottom plots of Figs. 2.1 and 2.2 , we have showed the
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Fig. 2.1. Detection probability ( P d, k ) field, for a fixed P f,k = 0 . 05 : power-law AAF. 

Top plot shows P d, k vs. x (generic sensor position) for a target located at x T = 

[0 . 1 0 . 5] T ; bottom plot depicts P d, k vs. ‖ x T − x ‖ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Detection probability ( P d, k ) field, for a fixed P f,k = 0 . 05 : exponential AAF. 

Top plot shows P d, k vs. x (generic sensor position) for a target located at x T = 

[0 . 1 0 . 5] T ; bottom plot depicts P d, k vs. ‖ x T − x ‖ . 
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3 In other terms, the applicability of CR to decision fusion is also valid in the 

case of local decision statistics at the sensors based on sub-optimal approaches, as 

opposed to what is assumed in this manuscript. 
same P d, k (with the same parameters as the top plots) as a func-

tion of the distance ‖ x T − x ‖ for different values of η ∈ {0.1, 0.5, 1}

and α ∈ {2, 4} (in the case of power law AAF). 

Without loss of generality, we assume that k th sensor decision,

denoted as d k , follows the map d k = i when hypothesis H i is de-

clared. Finally, for the sake of notational compactness, we define

the vector d � [ d 1 · · · d K ] 
T 

. 

2.3. Decision fusion 

Each sensor then sends its decision d k to the FC, which employs

a threshold-based decision test (we interchangeably use the term

“fusion rule”) on the basis of vector d , that is: 

�(d) 

ˆ H = H 1 

≷ 

ˆ H = H 0 

γ̄ , (2.9)

where γ̄ is the threshold chosen to ensure a certain global false-

alarm rate at the sensor (in Neyman–Pearson approach) or to min-

imize the global fusion error-probability (in the Bayesian frame-

work) [12] . Global performance are accordingly evaluated in terms

of (global) probability of false alarm ( P f , 0 ) and detection ( P d , 0 ),

defined as follows 

P f, 0 � Pr (� > γ̄ |H 0 ) , P d, 0 � Pr (� > γ̄ |H 1 ) . (2.10)

It is worth noticing that Pr (� > γ̄ |H i ) generically describes both

P f , 0 and P d , 0 (with i = 0 and i = 1 , respectively). The behavior of

the global probability of detection ( P d , 0 ) versus the global proba-

bility of false alarm ( P f , 0 ) is commonly denoted Receiver Operating

Characteristic (ROC) [4] . 

It is apparent that, under hypothesis H 1 , the pmf of d assumes

the explicit expression represented by the product of independent

Bernoulli pmfs (since the decisions d k are conditionally indepen-

dent , as an immediate consequence of mutual independence of
 k s, ξ k s and of decoupled quantization process), that is 

 (d|H 1 ) = 

K ∏ 

k =1 

P (d k |H 1 ) = 

K ∏ 

k =1 

(P d,k ) 
d k (1 − P d,k ) 

(1 −d k ) , (2.11)

nd a similar expression holds for P (d|H 0 ) , when replacing P d, k 

ith P f, k . The optimal decision statistic in both Neyman–Pearson

nd Bayesian senses is represented by the (global) LLR, given by 

LLR � ln 

[
P (d|H 1 ) 

P (d|H 0 ) 

]
= 

K ∑ 

k =1 

ln 

[
P (d k |H 1 ) 

P (d k |H 0 ) 

]
= 

K ∑ 

k =1 

{
d k ln 

[
P d,k 

P f,k 

]
+ (1 − d k ) ln 

[
1 − P d,k 

1 − P f,k 

]}
, (2.12)

here P d, k and P f, k are defined in Eq. (2.8) . Unfortunately, the LLR

annot be implemented as the P d, k s are usually unknown , since they

epend on the constitutive parameters of the (unknown) target

mission, that is ( i ) the average power σ 2 
s and ( ii ) the target lo-

ation x T . Therefore, it is apparent that Eq. (2.12) should not be

ntended as a realistic element of comparison, but rather as an op-

imistic (upper) bound on the achievable performance, based on a

lairvoyant assumption. 

On the other hand, from direct inspection of Eq. (2.8) , we no-

ice that P d, k ≥ P f, k ∀ k ∈ K, as each reasonable local decision pro-

edure 3 would achieve a ROC — operation point that is more in-

ormative than an unbiased coin (i.e. above the chance line). Based

n this observation, we may apply the well-known Counting Rule

CR) [4] , not requiring sensors local performance for its implemen-

ation. This rule is widely used in DF (due to its simplicity and no

equirements on system knowledge) and based on the following
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tatistic: 

CR � 

K ∑ 

k =1 

d k . (2.13) 

he above rule, despite of its simplicity, has been obtained under

ifferent rationales in the literature [4,7,8] . In fact, Eq. (2.13) can

e obtained as follows: 

• It is statistically equivalent to the LLR in Eq. (2.12) , by assuming

that the sensors have all equal performance (i.e., P d,k = P d and

P f,k = P f ) [4] ; 
• It is statistically equivalent to the locally most-mean powerful

test [25] in a partially-homogeneous scenario ( P f,k = P f ), assum-

ing no other constraint than P d, k ≥ P f, k [8] ; 
• It is the UMP invariant test for the permutation group [8] ; 
• It is statistically equivalent to the GLRT and Rao test in a

partially-homogeneous scenario ( P f,k = P f , when P f < 

1 
2 ), as-

suming no other constraint than P d, k ≥ P f, k [8] . 

. Practical fusion rules 

.1. Known target power 

Initially, we assume that σ 2 
s is known and then the hypothesis

esting problem can be summarized as: 

H 0 : σ 2 
s = 0 

H 1 : σ 2 
s > 0 ( known ) , x T ( nuisance ) 

, (3.1) 

hat is, we are concerned with discriminating between two hy-

otheses where the nuisance parameters ( x T ) are present only un-

er the (alternative) hypothesis H 1 . Such case has been analyzed

n the works [13,19] . 

LRT 

In [17] the authors proposed the use of a GLR statistic 4 , whose

xplicit log form for the considered problem is 

G � ln 

[
max x T P (d|H 1 ; x T ) 

P (d|H 0 ) 

]
(3.2) 

= 

K ∑ 

k =1 

{
d k ln 

[
P d,k ( ̂  x T ) 

P f,k 

]
+ (1 − d k ) ln 

[
1 − P d,k ( ̂  x T ) 

1 − P f,k 

]}
, (3.3) 

here ̂ x T denotes the Maximum Likelihood Estimate (MLE) of the

arget position, assuming that H 1 holds, that is: 

 

 T � arg max 
x T 

P (d|H 1 ; x T ) . (3.4)

learly, the higher the estimation accuracy of x T , the higher the

erformance of GLR statistic. It is worth noticing that ̂  x T cannot be

btained in closed form and therefore a grid search (or optimiza-

ion routines) should be devised (details on implementation are

ater provided in Section 3.4 ). Exploiting the parametric indepen-

ence of P (d|H 0 ) on x T and the monotonic property of logarithm,

he above expression can be rewritten in terms of Eq. (2.12) as: 

G = max 
x T 

�LLR (x T ) , (3.5) 

here �LLR (x T ) underlines the evaluation of LLR in Eq. (2.12) as-

uming that the target position equals x T . The alternative form in

3.5) will be exploited to draw out interesting considerations when

omparing GLRT with other detectors. 
4 We recall that in general the GLRT requires the evaluation of the MLE of the 

nknown parameter set under both hypotheses. However, referring to our specific 

ase, the nuisance parameter x T is not observable under H 0 . Therefore, the pdf of 

ull hypothesis is completely specified and no MLE evaluation is required in the 

atter case. 

(
 

T  

k

�  
ayesian Approach 

The pdf dependence on target’ s position under H 1 may be

liminated if a prior distribution on the position itself is available

or can be safely assumed) and integrating the corresponding like-

ihood (see, for example, [26] for the advantages provided by the

ayesian approach). Then, the explicit expression of the Bayesian

LR is given by [19] 

B � ln 

[∫ 
P (d|H 1 ; x T ) p(x T ) dx T 

P (d|H 0 ) 

]
= ln 

∫ K ∏ 

k =1 

(
P d,k (x T ) 

P f,k 

)d k 
(

1 − P d,k (x T ) 

1 − P f,k 

)(1 −d k ) 

p(x T ) dx T , 

(3.6) 

here the dependence of P d, k on target position x T is underlined.

t is interesting to notice that the above expression can be rewrit-

en as: 

B = ln 

∫ 
exp ( �LLR (x T ) ) p(x T ) dx T , (3.7)

here �LLR (x T ) has an analogous definition as that in Eq. (3.5) . 

.2. Unknown target power 

Differently, when σ 2 
s is assumed unknown, the resulting (com- 

osite) hypothesis testing generalizes to: 

H 0 : σ 2 
s = 0 

H 1 : σ 2 
s > 0 , x T ( nuisance ) 

(3.8) 

he above problem is recognized as a one-sided hypothesis test-

ng with nuisance parameters that are present only under the (al-

ernative) hypothesis H 1 . In the rest of the paper, for the sake of

otational convenience, we will use the symbol θ to refer to the

nknown average power σ 2 
s (with corresponding notation θ0 for

2 
s = 0 ). 

iscussion: Counting Rule (CR) and Clairvoyant LLR 

It is worth noticing that, in the case of unknown power σ 2 
s , the

R can be still implemented, as it does not require the knowledge

f the P d, k s (cf. Eq. (2.13) ). Similarly, in the present scenario we

ill refer to the statistic which has (unrealistic) knowledge of both

 T and σ 2 
s as a clairvoyant LLR and thus the same formula as in Eq.

2.12) can be applied. Apparently, in the considered scenario, the

LR will represent an even looser benchmark on the performance

f practical fusion rules. 

LRT 

The GLRT for this case was proposed and analyzed in [20] . In-

eed, the explicit expression of the (log-)GLR statistic is: 

G � ln 

[
max σ 2 

s , x T 
P (d|H 1 ; x T , σ

2 
s ) 

P (d|H 0 ) 

]
(3.9) 

= 

K ∑ 

k =1 

{
d k ln 

[
P d,k ( ̂  x T , ̂

 σ 2 
s ) 

P f,k 

]
+ (1 −d k ) ln 

[
1 −P d,k ( ̂  x T , ̂

 σ 2 
s ) 

1 − P f,k 

]}
, 

(3.10) 

here ̂ x T and 

̂ σ 2 
s denote the ML estimates of the target position

nd (average) target power, assuming that hypothesis H 1 is true,

hat is: 

̂ x T , ̂
 σ 2 

s 

)
� arg max 

x T , σ 2 
s 

P (d|H 1 ; x T , σ
2 
s ) . (3.11)

he above expression can be rewritten (similarly as in the case of

nown power, cf. Eq. (3.5) ) in terms of Eq. (2.12) as: 

G = max 
x T ,σ 2 

s 

�LLR (x T , σ
2 
s ) , (3.12)
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where �LLR (x T , σ
2 
s ) is used to denote the LLR of Eq. (2.12) evalu-

ated assuming the target position and power corresponding to x T 
and σ 2 

s , respectively. 

Bayesian Approach 

In order to follow a purely Bayesian approach, we need elimi-

nate both the dependence on target’ s position and average emit-

ted power (under H 1 ) by assigning prior distributions to them both

and integrating the corresponding likelihood. Thus, the closed form

of the Bayesian LLR is given by [19] 

�B � ln 

[∫ 
P (d|H 1 ; x T , σ

2 
s ) p(x T ) p(σ 2 

s ) d x T d σ
2 
s 

P (d|H 0 ) 

]
(3.13)

= ln 

∫ K ∏ 

k =1 

(
P d,k (x T , σ

2 
s ) 

P f,k 

)d k 
(

1 − P d,k (x T , σ
2 
s ) 

1 − P f,k 

)(1 −d k ) 

p(x T ) p(σ 2 
s ) d x T d σ

2 
s . (3.14)

As previously shown, the above expression can be similarly rewrit-

ten as: 

�B = ln 

∫ 
exp 

(
�LLR (x T , σ

2 
s ) 
)

p(x T ) p(σ 2 
s ) d x T d σ

2 
s , (3.15)

where �LLR (x T , σ
2 
s ) has an analogous definition as in Eq. (3.12) . 

Hybrid GLRT/Bayesian approaches 

Other approaches can be obtained by mixing the two previous

philosophies. For example, assuming a prior distribution to the tar-

get position and treating the average emitted power σ 2 
s as an un-

known and deterministic parameter, leads to the following decision

statistic: 

�GB1 � ln 

[
max σ 2 

s 

∫ 
P (d|H 1 ; x T , σ 2 

s ) p(x T ) dx T 

P (d|H 0 ) 

]
(3.16)

= ln max 
σ 2 

s 

{ ∫ K ∏ 

k =1 

(
P d,k (x T , σ

2 
s ) 

P f,k 

)d k 

×
(

1 − P d,k (x T , σ
2 
s ) 

1 − P f,k 

)(1 −d k ) 

p(x T ) dx T 

} 

. (3.17)

The above statistic can be re-expressed as 

�GB1 = max 
σ 2 

s 

ln 

∫ 
exp (�LLR (x T , σ

2 
s )) p(x T ) dx T , (3.18)

with �LLR (x T , σ
2 
s ) having the usual interpretation. Alternatively, we

can pursue a dual approach, by assuming a prior distribution for

σ 2 
s and treating the target position x T as unknown and determin-

istic. In the latter case, the following decision statistic can be ob-

tained: 

�GB2 � ln 

[
max x T 

∫ 
P (d|H 1 ; x T , σ

2 
s ) p(σ 2 

s ) dσ 2 
s 

P (d|H 0 ) 

]
(3.19)

= ln max 
x T 

{ ∫ K ∏ 

k =1 

(
P d,k (x T , σ

2 
s ) 

P f,k 

)d k 

×
(

1 − P d,k (x T , σ
2 
s ) 

1 − P f,k 

)(1 −d k ) 

p(σ 2 
s ) dσ 2 

s 

} 

. (3.20)

The dual statistic can be similarly rewritten as 

�GB2 = max ln 

∫ 
exp (�LLR (x T , σ

2 )) p(σ 2 ) dσ 2 . (3.21)

x T 

s s s o  
Hybrid) Bayesian Locally-Optimum Detection Approach 

In this case, we depart from naive Bayesian and GLRT ap-

roaches. More specifically, our aim is to exploit the one-sided na-

ure (when referring to σ 2 
s ) of the hypothesis testing considered

cf. Eq. (3.8) ). However, the problem here is complicated by the

resence of the nuisance parameter x T under the hypothesis H 1 . To

his end, in order to get rid of the dependence on x T , we consider

t as an unknown random parameter and assign a prior distribu-

ion p ( x T ). Then, we consider the averaged pdf under H 1 : 

 (d|H 1 ; θ ) = 

∫ 
P (d|H 1 ; x T , θ ) p(x T ) dx T , (3.22)

here we have used the common variable θ in the place of σ 2 
s .

nce we have averaged out the dependence on x T , we can ap-

ly the usual Locally-Optimum Detector (LOD), exploiting the one-

ided problem [22] . Its implicit form is given by: 

BLOD � 

∂ ln [ P(d|H 1 ;θ ) ] 
∂θ

∣∣∣
θ= θ0 √ 

I(θ0 ) 
, (3.23)

here I ( θ0 ) represents the Fisher Information (FI) evaluated at θ0 ,

hat is: 

(θ ) � E 

{ (
∂ ln [ P (d|H 1 ; θ ) ] 

∂θ

)2 
} 

. (3.24)

valuation of the terms contained in (3.23) provides the explicit

orm of �B LOD , shown hereinafter (the detailed derivation is given

n the Appendix): 

�BLOD 

= 

∑ K 
k =1 

d k −P f,k 

P f,k ( 1 −P f,k ) 
p w 

(√ 

γk 

σ 2 
w,k 

)
√ 

γk 

( σ 2 
w,k ) 

3 / 2 

∫ 
g 2 (x T , x k ) p(x T ) dx T √ ∑ K 

k =1 
1 

P f,k ( 1 −P f,k ) 
p 2 w 

(√ 

γk 

σ 2 
w,k 

)
γk 

( σ 2 
w,k ) 

3 

(∫ 
g 2 (x T , x k ) p(x T ) dx T 

)2 

.

(3.25)

he so-called “Bayesian-LOD” (or B-LOD) statistic can be also

ewritten in a more compact form. To this end, we define the fol-

owing quantities: 

k (d k ) � 

d k − P f,k 

P f,k (1 − P f,k ) 
p w 

( √ 

γk 

σ 2 
w,k 

) √ 

γk (
σ 2 

w,k 

)3 / 2 
, (3.26)

 k � 

1 

P f,k (1 − P f,k ) 
p 2 w 

( √ 

γk 

σ 2 
w,k 

) 

γk (
σ 2 

w,k 

)3 
. (3.27)

xploiting Eqs. (3.26) and (3.27) into (3.25) , we obtain the equiva-

ent expression: 

BLOD = 

∑ K 
k =1 νk (d k ) 

∫ 
g 2 (x T , x k ) p(x T ) dx T √ ∑ K 

k =1 ψ k 

(∫ 
g 2 (x T , x k ) p(x T ) dx T 

)2 
. (3.28)

eneralized LOD based on Davies approach 

A different approach to exploiting the one-sided nature of the

roblem under investigation consists in adopting the detection ap-

roach proposed by Davies [23] . The aforementioned approach al-

ows to extend score-based tests to the case of nuisance parame-

ers present under the sole H 1 , as these tests require the ML esti-

ates of nuisances under H 0 (which thus cannot be obtained). The

uilding rationale of Davies approach is summarized as follows. 

When x T is known in (3.8) , the problem reduces to a simple

ne-sided testing. In the latter case, the LOD seems a reasonable
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ecision procedure for the problem. However, since in practice x T 
s unknown, a family of statistics is rather obtained by varying x T .

ence, to overcome this technical difficulty, Davies proposed the

se of the maximum of the family of the statistics, following a

GLRT-like” approach. In what follows, we will refer to the em-

loyed decision test as Generalized LOD (G-LOD) , to underline the

se of LOD as the inner statistic employed in Davies approach. 

The implicit form of the G-LOD is given by [23] : 

GLOD � max 
x T 

∂ ln [ P(d|H 1 ;x T ,θ ) ] 
∂θ

∣∣∣
θ= θ0 √ 

I(θ0 , x T ) 
, (3.29) 

here the symbol I ( θ , x T ) is used to denote the FI assuming x T 
nown, that is: 

(θ, x T ) � E 

{ (
∂ ln [ P (d|H 1 ; x T , θ ) ] 

∂θ

)2 
} 

. (3.30)

he derivation of the inner term in Eq. (3.29) is provided in Ap-

endix. The explicit form is given as: 

GLOD = max 
x T 

∑ K 
k =1 

d k −P f,k 
P f,k (1 −P f,k ) 

p w 

(√ 

γk 

σ 2 
w,k 

)
√ 

γk g 
2 (x T , x k ) 

( σ 2 
w,k ) 

3 / 2 √ ∑ K 
k =1 

1 
P f,k (1 −P f,k ) 

p 2 w 

(√ 

γk 

σ 2 
w,k 

)
γk g 

4 (x T , x k ) 

( σ 2 
w,k ) 

3 

. (3.31) 

he G-LOD can be also expressed in the compact form 

GLOD = max 
x T 

∑ K 
k =1 νk (d k ) g 

2 (x T , x k ) √ ∑ K 
k =1 ψ k g 

4 (x T , x k ) 
, (3.32) 

y exploiting the same definitions as the B-LOD in Eqs. (3.26) and

3.27) , respectively. 

.3. Imperfect reporting channels 

The previous sections assumed that binary data d k from the

SN could be transmitted to the FC without any distortion . In this

ection, we consider an imperfect link scenario where the one-bit

uantized data are sent to the FC over (independent) BSCs, in or-

er to account for limited transmit energy and possible failures of

he sensors. We observe that the BSC model arises when separa-

ion between sensing and communication layers is performed in

he design phase (namely a “decode-then-fuse ” approach [27,28] ). 

More specifically, we assume that the FC observes a noisy

inary-valued signal ̂ d k from k th sensor, that is: 

̂ 

 k = 

{
d k with probability (1 − P e,k ) 
1 − d k with probability P e,k 

(3.33) 

ere P e, k denotes the BEP on the k th link. Throughout this paper

e make the reasonable assumption P e,k ≤ 1 
2 and we hypothesize

hat P e, k values can be safely estimated by the FC (that is they are

nown ). This is for example the case when coherent detection or

on-coherent detection with orthogonal symbols is performed over

 fading channel, as soon as the corresponding Signal-To-Noise Ra-

io (SNR) can be obtained, e.g [7,29,30] .. Then, we similarly collect

he received (noisy) decisions as ̂ d � [ ̂  d 1 · · · ̂ d K ] 
T . 

It is apparent that, under hypothesis H 1 , the pmf of ̂ d still as-

umes a similar (to the noise-free reporting channels case) expres-

ion given by the product of independent Bernoulli pmfs (since the

eporting channels are assumed to act independently ), that is: 

 ( ̂  d |H 1 ) = 

K ∏ 

k =1 

P ( ̂  d k |H 1 ) = 

K ∏ 

k =1 

(ρ1 ,k ) ̂
 d k (1 − ρ1 ,k ) 

(1 −̂ d k ) , (3.34)

here ρ1 ,k � 

[(
1 − P e,k 

)
P d,k + P e,k (1 − P d,k ) 

]
. Also, a similar ex-

ression holds for P ( ̂  d |H 0 ) , when replacing ρ1, k with ρ0 ,k �
(
1 − P e,k 

)
P f,k + P e,k (1 − P f,k ) 

]
. We remark that P d, k and P f, k retain

he same definition of Eq. (2.8) . 

iscussion: Counting Rule (CR) and Clairvoyant LLR 

First , it is worth noticing that, the CR rule can be still applied in

he case of error-prone reporting channels, as long as ρ1, k ≥ ρ0, k .

uch condition is satisfied as long as the reasonable conditions P d, k 

P f, k and P e, k ≤ 1/2 hold, respectively. Secondly, the (clairvoyant)

LR is given by 

LLR � ln 

[
P ( ̂  d |H 1 ) 

P ( ̂  d |H 0 ) 

]
= 

K ∑ 

k =1 

ln 

[
P ( ̂  d k |H 1 ) 

P ( ̂  d k |H 0 ) 

]
= 

K ∑ 

k =1 

{̂ d k ln 

[
ρ1 ,k 

ρ0 ,k 

]
+ (1 − ̂ d k ) ln 

[
1 − ρ1 ,k 

1 − ρ0 ,k 

]}
. (3.35) 

s in the case of error-free reporting channels, the clairvoyant LLR

equires knowledge of both x T and σ 2 
s and additionally of BEPs

 e, k . Also, we recall that the additionally uncertainty arising from

he BSCs should not affect the relative loss in performance incurred

y the proposed rules in comparison to the LLR, as they will all

ely on the availability of P e, k . The sole exception is represented

y the CR, which does not rely on P e, k s for its implementation (it

nly requires P e, k ≤ 1/2). 

LRT 

In the present scenario, the explicit expression of the (log-)GLR

tatistic generalizes to: 

G � ln 

[ 

max σ 2 
s , x T 

P ( ̂  d |H 1 ; x T , σ
2 
s ) 

P ( ̂  d |H 0 ) 

] 

(3.36) 

= 

K ∑ 

k =1 

{̂ d k ln 

[
ρ1 ,k ( ̂  x T , ̂

 σ 2 
s ) 

ρ0 ,k 

]
+ (1 −̂ d k ) ln 

[
1 −ρ1 ,k ( ̂  x T , ̂

 σ 2 
s ) 

1 − ρ0 ,k 

]}
, 

(3.37) 

here ̂ x T and 

̂ σ 2 
s denote the usual ML estimates of the target po-

ition and (average) emitted reference power, assuming that H 1 is

rue. Also, we have adopted the notation ρ1 ,k (x T , σ
2 
s ) to underline

he dependence on x T and σ 2 
s via P d,k (x T , σ

2 
s ) . Finally, we remark

hat the above expression can be similarly rewritten in terms of

he clairvoyant LLR in (3.35) as Eq. (3.12) . 

ayesian Approach 

In the case of imperfect reporting channels, the explicit expres-

ion of the (purely) Bayesian LLR generalizes to: 

B � ln 

[∫ 
P ( ̂  d |H 1 ; x T , σ

2 
s ) p(x T ) p(σ 2 

s ) d x T d σ
2 
s 

P ( ̂  d |H 0 ) 

]
(3.38) 

= ln 

∫ K ∏ 

k =1 

(
ρ1 ,k (x T , σ 2 

s ) 

ρ0 ,k 

)̂ d k 

×
(

1 − ρ1 ,k (x T , σ 2 
s ) 

1 − ρ0 ,k 

)(1 −̂ d k ) 

p(x T ) p(σ 2 
s ) d x T d σ

2 
s . (3.39) 

s previously shown, the above expression can be similarly rewrit-

en as in Eq. (3.15) , exploiting the LLR definition provided in (3.35) .

ybrid GLRT/Bayesian approaches 

Hybrid GLRT/Bayesian approaches are straightforwardly ex- 

ended as follows. For example, assuming a prior for the target po-
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sition x T and treating σ 2 
s as deterministic provides: 

�GB1 � ln 

[ 

max σ 2 
s 

∫ 
P 
(̂ d |H 1 ; x T , σ 2 

s 

)
p(x T ) dx T 

P 
(̂ d |H 0 

) ] 

(3.40)

= ln max 
σ 2 

s 

∫ { 

K ∏ 

k =1 

(
ρ1 ,k (x T , σ

2 
s ) 

ρ0 ,k 

)̂ d k 
(

1 − ρ1 ,k (x T , σ
2 
s ) 

1 − ρ0 ,k 

)(1 −̂ d k ) 
} 

p(x T ) dx T (3.41)

The above statistic can be re-expressed in terms of the LLR sim-

ilarly as Eq. (3.18) . Alternatively, assuming a prior distribution for

σ 2 
s and treating the target position x T as unknown deterministic,

the complementary hybrid statistic generalizes to: 

�GB2 � ln 

[ 

max x T 
∫ 

P 
(̂ d |H 1 ; x T , σ 2 

s 

)
p(σ 2 

s ) dσ 2 
s 

P 
(̂ d |H 0 

) ] 

(3.42)

= ln max 
x T 

∫ { 

K ∏ 

k =1 

(
ρ1 ,k (x T , σ

2 
s ) 

ρ0 ,k 

)̂ d k 

×
(

1 − ρ1 ,k (x T , σ
2 
s ) 

1 − ρ0 ,k 

)(1 −̂ d k ) 

p(σ 2 
s ) dσ 2 

s 

} 

(3.43)

As usual, the above statistic can be re-expressed in terms of LLR

similarly as Eq. (3.21) . 

(Hybrid) Bayesian Locally-Optimum Detection Approach 

To approach the detection problem through the common LOD

approach, we first consider the averaged pdf under H 1 : 

P 
(̂ d | H 1 ; θ

)
= 

∫ 
P 
(̂ d | H 1 ; x T , θ

)
p(x T ) dx T . (3.44)

The implicit form of the LOD is thus given by: 

�BLOD � 

∂ ln [ P ( ̂  d |H 1 ;θ ) ] 
∂θ

∣∣∣
θ= θ0 √ 

I(θ0 ) 
, (3.45)

where I ( θ0 ) represents the usual FI evaluated at θ0 , that is: 

I(θ ) � E 

⎧ ⎨ ⎩ 

( 

∂ ln 

[
P 
(̂ d | H 1 ; θ

)]
∂θ

) 2 
⎫ ⎬ ⎭ 

. (3.46)

The explicit form of �B LOD is shown as follows (the derivation is
left to the reader for the sake of brevity): 

�BLOD 

= 

∑ K 
k =1 

̂ d k −ρ0 ,k 

ρ0 ,k 

(
1 −ρ0 ,k 

) (1 − 2 P e,k ) p w 

( √ 

γk 

σ2 
w,k 

) √ 

γk (
σ2 

w,k 

)3 / 2 

(∫ 
g 2 (x T , x k ) p(x T ) dx T 

)
√ √ √ √ 

∑ K 
k =1 

1 

P f,k 

(
1 −P f,k 

) p 2 w 

( √ 

γk 

σ2 
w,k 

) 
γk (

σ2 
w,k 

)3 

(∫ 
g 2 (x T , x k ) p(x T ) dx T 

)2 
(3.47

Similarly, by exploiting the following generalized definitions 

 νk ( ̂
 d k ) � 

̂ d k − ρ0 ,k 

ρ0 ,k 

(
1 − ρ0 ,k 

) (1 − 2 P e,k ) p w 

( √ 

γk 

σ 2 
w,k 

) √ 

γk (
σ 2 

w,k 

)3 / 2 
, (3.48)

̂ ψ k � 

1 

ρ0 ,k 

(
1 − ρ0 ,k 

) (1 − 2 P e,k ) 
2 p 2 w 

( √ 

γk 

σ 2 
w,k 

) 
γk (

σ 2 
w,k 

)3 
, (3.49)

the B-LOD can be also expressed in a similar compact form: 

�BLOD = 

∑ K 
k =1 ̂

 νk ( ̂
 d k ) 
∫ 

g 2 (x T , x k ) p(x T ) dx T √ ∑ K ̂ (∫ 2 
)2 . (3.50)
k =1 ψ k g (x T , x k ) p(x T ) dx T �  
eneralized LOD based on Davies approach 

The implicit form of LOD based on Davies approach is given by

23] : 

GLOD � max 
x T 

∂ ln [ P ( ̂  d |H 1 ;x T ,θ ) ] 
∂θ

∣∣∣
θ= θ0 √ 

I(x T , θ0 ) 
, (3.51)

here the symbol I ( x T , θ ) is used to denote the FI assuming x T 
nown, that is: 

(x T , θ ) � E 

⎧ ⎨ ⎩ 

( 

∂ ln 

[
P ( ̂  d |H 1 ; x T , θ ) 

]
∂θ

) 2 
⎫ ⎬ ⎭ 

. (3.52)

he derivation of the inner term in Eq. (3.51) is left to the reader

or sake of brevity. The explicit form is given as: 

GLOD = max 
x T 

∑ K 
k =1 

̂ d k −ρ0 ,k 

ρ0 ,k ( 1 −ρ0 ,k ) 
(1 − 2 P e,k ) p w 

(√ 

γk 

σ 2 
w,k 

)
√ 

γk g 
2 (x T , x k ) 

( σ 2 
w,k ) 

3 / 2 √ ∑ K 
k =1 

(1 −2 P e,k ) 2 

ρ0 ,k ( 1 −ρ0 ,k ) 
p 2 w 

(√ 

γk 

σ 2 
w,k 

)
γk g 

4 (x T , x k ) 

( σ 2 
w,k ) 

3 

. 

(3.53)

imilarly, G-LOD can be also expressed in the compact form: 

GLOD = max 
x T 

∑ K 
k =1 ̂

 νk ( ̂
 d k ) g 

2 (x T , x k ) √ ∑ K 
k =1 

̂ ψ k g 
4 (x T , x k ) 

, (3.54)

y exploiting the same definitions as the B-LOD in Eqs. (3.48) and

3.49) , respectively. 

.4. Summary of the considered rules and their practical 

mplementation 

In this section, we provide a summarizing comparison of the

onsidered rules, focusing on the computational complexity (a per-

ormance comparison is then provided in Section 4 ). To this end, in

able 1 we report the explicit form of the considered fusion rules,

s well as the corresponding complexity required for their imple-

entation. 

First of all, we observe that CR (cf. Eq. (2.13) ) and B-LOD (cf.

q. (3.50) ) require the lowest complexity (that is O(K) ), as only

 sum of K terms needs to be evaluated (indeed the integra-

ions of B-LOD in (3.50) can be performed off-line). Secondly, all

he remaining rules require optimizations (GLRT and G-LOD), in-

egrations (Bayesian approach) or both of them (viz. hybrid ap-

roaches). In this case, the complexity evaluation in Table 1 sub-

umes that a grid search or integration is performed, similarly as in

17,19,20] . Additionally, when dealing with prior pdfs, we employ

on-informative priors with the intent of underlining useful analo-

ies among proposed rules. Nonetheless, grid implementation (and

orresponding complexity evaluation) still applies to the case of in-

ormative priors. 

More specifically, after assuming that x T and σ 2 
s belong to lim-

ted sets S x T ⊂ R 

d and S σ 2 
s 

⊂ R 

+ , respectively, the space ( x T , σ
2 
s ) is

hen discretized into: 

• N x T position bins in the d -dimensional space, each one associ-

ated to a center bin position, say x T [ i ], i ∈ { 1 , . . . , N x T } ; 
• N σ 2 

s 
variance (power) bins, each one to associated to a center

bin variance, say σ 2 
s [ j] , j ∈ { 1 , . . . , N σ 2 

s 
} . 

Grid implementation of GLRT: Starting from the alternative form

f Eq. (3.12) , we approximate the GLRT via the following grid

earch: 

G ≈ max 
i =1 , ... ,N x T 

max 
j=1 , ... ,N 

σ2 
s 

�LLR (x T [ i ] , σ
2 
s [ j]) ; (3.55)



D. Ciuonzo, P. Salvo Rossi / Information Fusion 36 (2017) 261–274 269 

Table 1 

Comparison of decision statistics; �LLR (x T ) and �LLR (x T , σ 2 
s ) are defined through Eq. (2.12) . 

Fusion Rule Explicit Expression Computational Complexity 

GLR max x T ,σ 2 
s 

�LLR (x T , σ 2 
s ) O 

(
K · N x T · N σ 2 

s 

)
(Grid) 

Bayesian ln 
∫ 

exp (�LLR (x T , σ 2 
s )) p(x T ) p(σ 2 

s ) d x T d σ
2 
s O 

(
K · N x T · N σ 2 

s 

)
(Grid) 

Hybrid Approach 1 max σ 2 
s 

ln 
∫ 

exp (�LLR (x T , σ 2 
s )) p(x T ) dx T O 

(
K · N x T · N σ 2 

s 

)
(Grid) 

Hybrid Approach 2 max x T ln 
∫ 

exp (�LLR (x T , σ
2 
s )) p(σ 2 

s ) dσ 2 
s O 

(
K · N x T · N σ 2 

s 

)
(Grid) 

Bayesian LOD 
∑ K 

k =1 ̂
 νk ( ̂

 d k ) 
∫ 

g 2 (x T , x k ) p(x T ) dx T √ ∑ K 
k =1 ̂

 ψ k ( 
∫ 

g 2 (x T , x k ) p(x T ) dx T ) 
2 

O(K) 

Counting Rule 
∑ K 

k =1 ̂
 d k O(K) 

Generalized LOD max x T 

∑ K 
k =1 ̂

 νk ( ̂
 d k ) g 

2 (x T , x k ) √ ∑ K 
k =1 ̂

 ψ k g 4 (x T , x k ) 
O ( K · N x T ) (Grid) 
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here we recall that �LLR (x T [ i ] , σ
2 
s [ j]) represents the expression of

he clairvoyant LLR statistic obtained by evaluating the P d, k s by re-

lacing x T and σ 2 
s with x T [ i ] and σ 2 

s [ j] , respectively, into (2.8) . 

Grid implementation of Bayesian approach: First, we approximate

he double integral in (3.15) through the Riemann sums as fol-

ows: 

B ≈ ln 

⎡ ⎣ 

N x T ∑ 

i =1 

N 
σ2 

s ∑ 

j=1 

exp 

{
�LLR (x T [ i ] , σ

2 
s [ j]) + ln r i + ln r̄ j 

}⎤ ⎦ , (3.56) 

here r i and r̄ j are the mass probabilities associated to bins

 and j of x T and σ 2 
s , through p ( x T ) and p(σ 2 

s ) , respectively.

n other words, r i � Pr { x T ∈ I(x T [ i ]) } and r̄ j � Pr { σ 2 
s ∈ I(σ 2 

s [ j]) } ,
here I(x T [ i ]) and I(σ 2 

s [ j]) denote the extent of i th and j th bins

f the grid employed. This approximation admits a more intuitive

orm when the prior pdfs are assumed non-informative (viz. uni-

orm). Indeed, in the latter case, the above approximation special-

zes into: 

B ≈ r ̄r ln 

⎡ ⎣ 

N x T ∑ 

i =1 

N 
σ2 

s ∑ 

j=1 

exp (�LLR (x T [ i ] , σ
2 
s [ j])) 

⎤ ⎦ , (3.57) 

∝ ln 

⎡ ⎣ 

N x T ∑ 

i =1 

N 
σ2 

s ∑ 

j=1 

exp (�LLR (x T [ i ] , σ
2 
s [ j])) 

⎤ ⎦ . (3.58) 

he right-hand side is in the form of the well-known log-sum-

xp combination, which can be also interpreted as a “soft-max”

unction. Therefore it is apparent that GLR approximation in

3.55) shows a clear connection with the Bayesian approach in

3.58) , as also observed in [19] for the case of random sensor de-

loyment. 

Grid implementation of hybrid approaches: Remarkably, the hy-

rid fusion rules of Section 3.3 admit similar approximations as the

ure GLR and Bayesian decision statistic. Indeed, �GB1 in (3.18) is

pproximated (assuming a uniform pdf for p ( x T )) as 

GB1 ≈ max 
j=1 , ... ,N 

σ2 
s 

ln 

N x T ∑ 

i =1 

exp (�LLR (x T [ i ] , σ
2 
s [ j])) , (3.59)

hile �GB2 in (3.21) is approximated (assuming a uniform pdf for

p(σ 2 
s ) ) as: 

GB2 ≈ max 
i =1 , ... ,N x T 

ln 

N 
σ2 

s ∑ 

j=1 

exp (�LLR (x T [ i ] , σ
2 
s [ j])) . (3.60)

he above expressions underline the soft-max approach with re-

pect to one variable and a max approach with respect to the

ther. Clearly, the computational complexity of all these methods

s based on the evaluation of the statistic at the grid points, thus

mplying O 

(
K · N x T · N σ 2 

s 

)
. 
Grid implementation of G-LOD: Finally, the G-LOD can be approx-

mated in a similar way by discretizing only the search space of x T 
s: 

GLOD ≈ max 
i =1 , ... ,N x T 

∑ K 
k =1 ̂

 νk ( ̂
 d k ) g 

2 (x T [ i ] , x k ) √ ∑ K 
k =1 

̂ ψ k g 
4 (x T [ i ] , x k ) 

. (3.61) 

herefore, its complexity is given by O 

(
K · N x T 

)
and provides a dra-

atic reduction in complexity with respect to other rules based on

rid implementation. 

. Simulation results 

In this section we compare the performance of the considered

ules through numerical results. To this end, we consider a 2-D

cenario ( x T ∈ R 

2 ) where a WSN is employed to detect the pres-

nce of a target within the region [0, 1] × [0, 1], which repre-

ents the considered surveillance area. The sensors are arranged

ccording to a regular square grid covering the surveillance area, as

hown in Fig. 4.1 , where two cases concerning K = 49 and K = 64

ensors are illustrated. 

With reference to the sensing model, for simplicity we assume

he same measurement variance for all the sensors, i.e. σ 2 
w,k 

= σ 2 
w 

.

lso, without loss of generality, we set σ 2 
w 

= 1 . Differently, with

eference to the AAF, we will both consider both the cases of

 i ) power-law and ( ii ) exponential AAFs, with parameter values:

= 0 . 2 (viz. approximate target extent); α = 4 (power-law AAF de-

ay exponent). Finally, we define the local sensing SNR as SNR �
0 log 10 

σ 2 
s 

σ 2 
w 

. The local false-alarm rate for every sensor is set to

 f,k = 0 . 05 (the corresponding decision threshold γ k is obtained by

nverting relationship in Eq. (2.8) ). When not otherwise specified,

e assume ideal reporting channels, i.e. P e,k = 0 , k ∈ K. 

With reference to grid-based approaches (cf. Section 3.4 ), those

mployed for x T and σ 2 
s are the following: 

• Target position x T : the search (resp. integration) space corre-

sponds to the surveillance area, i.e. S x T = [0 , 1] × [0 , 1] . The x-

and y-coordinates grid spacings are given by (1/ N x ), where N x =
100 is chosen here; 

• Target average emitted power σ 2 
s : the search (resp. integration)

space is chosen as 

S σ 2 
s 

= 

[
(1 − ρs ) · σ 2 

s, t rue , (1 + ρs ) · σ 2 
s, t rue 

]
, (4.1) 

where σ 2 
s, true denotes the emitted power true value and ρs =

1 
10 , which provides a relative 20% uncertainty with respect to

σ 2 
s, true . The grid spacing is given by 

2 ρs σ 2 
s, true 

N σ
, where N σ = 10 is

chosen here; 

In what follows we compare the considered rules through their

orresponding ROCs based on Monte Carlo simulations, obtained

ith 10 5 runs. The ROC performance reported refer to a scenario

here x T is uniformly randomly generated at each run within the

urveillance area S x . 
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Fig. 4.1. Regular deployment of WSN in the case of K = 49 (blue “�” markers) and K = 64 (red “◦” markers) sensors. The area delimited by magenta dashed line refers to 

informative prior setup, i.e. S x T � [0 . 35 , 0 . 65] × [0 . 35 , 0 . 65] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 4.2. P d , 0 vs. P f , 0 for all the presented rules; WSN with K = 49 sensors, SNR = 10 dB , P e,k = 0 (ideal reporting channels). 
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First, in Fig. 4.2 we report the ROCs for both the cases of power-

law AAF (subfigure ( a )) and exponential AAF (subfigure ( b )) in a

WSN with K = 49 sensors arranged as in Fig. 4.1 (blue “�” mark-

ers). First of all, it is apparent that B-LOD and CR achieve almost

the same performance in this scenario. Therefore, the prior in-

formation on x T is too vague and does not provide itself a rele-

vant gain w.r.t. “blind assumption” of CR, which also arises from

different founding rationales (cf. Section 2.3 ). Differently, all the

other rules achieve a significant performance improvement over

CR. Moreover, purely Bayesian and GLRT approaches, as well as the

hybrid ones, roughly achieve the same performance under both

power-law and exponential AAFs. Interestingly, G-LOD achieves a

worth performance gain w.r.t. CR, especially in the case of an ex-

ponential AAF. This is motivated by a faster signal decay (viz. a

more “sensitive” spatial signature), which is effectively exploited
y the maximization required for G-LOD implementation (see

q. (3.54) ). Also, from inspection of the figures, G-LOD suffers from

 slight performance loss when compared to remaining grid-based

pproaches. However, such loss is balanced by a significant lower

omplexity required, thus confirming its attractiveness. 

Differently, in Fig. 4.3 we report similar ROCs for the case of

 more informative prior availability on x T . More specifically, we

ssume that x T ∈ S x T � [0 . 35 , 0 . 65] × [0 . 35 , 0 . 65] (see Fig. 4.1 ), i.e.

he target can be located (when present) within a smaller square

han the WSN deployment region (see Fig. 4.1 ). By looking at the

gure, similar considerations can be also drawn in this setup, ex-

ept for the ROC performance achieved by B-LOD. Indeed, in the

atter case, the exploitation of the more informative prior pdf p ( x T )

vailable (i.e. a uniform one on a smaller area) overcomes the blind

ature behind CR derivation. Therefore, when accurate information
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Fig. 4.3. P d , 0 vs. P f , 0 for all the presented rules (informative prior setup); WSN with K = 49 sensors, SNR = 10 dB , P e,k = 0 (ideal reporting channels). 

Fig. 4.4. P d , 0 vs. P f , 0 for all the presented rules; WSN with K = 64 sensors, SNR = 10 dB , P e,k = 0 (ideal reporting channels). 

Fig. 4.5. P d , 0 vs. P f , 0 for all the presented rules (informative prior setup); WSN with K = 64 sensors, SNR = 10 dB , P e,k = 0 (ideal reporting channels). 
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n target potential position is available, B-LOD represents an in-

eresting alternative rule, since its complexity grows only linearly

ith the number of sensors K (cf. Table 1 ). 

Then, in Figs. 4.4 and 4.5 we illustrate performance for the pre-

ious two setups (common and informative setups) in the case of

 = 64 sensors (i.e. a more densely deployed WSN), arranged as
hown in Fig. 4.1 (red “◦” markers). It is apparent that all rules

enefit from an increase of the number of sensors. Nonetheless,

nalogous trends as the case K = 49 can be observed. 

Finally, in Figs. 4.6 and 4.7 we show ROCs for the previous se-

ups (assuming K = 64 ) in the case of imperfect reporting chan-

els. More specifically, for simplicity we assume the same BEP for
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Fig. 4.6. P d , 0 vs. P f , 0 for all the presented rules; WSN with K = 64 sensors, SNR = 10 dB , P e,k = 0 . 1 (imperfect reporting channels). 

Fig. 4.7. P d , 0 vs. P f , 0 for all the presented rules (informative prior setup); WSN with K = 64 sensors, SNR = 10 dB , P e,k = 0 . 1 (imperfect reporting channels). 

Table 2 

Global detection probability ( P d , 0 ) comparison for the presented 

rules (global false-alarm rate is set to P f, 0 = 10 −2 ). WSN with K = 64 

sensors, SNR = 10 dB . 

Fusion Rule Pow-Law, Exp-Law, Pow-Law, Exp-Law, 

P e,k = 0 P e,k = 0 P e,k = 0 . 1 P e,k = 0 . 1 

�G 0 .87 0 .83 0 .49 0 .50 

�B 0 .87 0 .83 0 .5 0 .51 

�GB1 0 .87 0 .83 0 .5 0 .51 

�GB2 0 .87 0 .83 0 .49 0 .50 

�BLOD 0 .75 0 .55 0 .38 0 .23 

�CR 0 .77 0 .55 0 .38 0 .23 

�GLOD 0 .81 0 .81 0 .44 0 .44 

 

 

 

 

 

 

 

 

 

 

Table 3 

Global detection probability ( P d , 0 ) comparison for the presented 

rules (global false-alarm rate is set to P f, 0 = 10 −2 ). WSN with K = 64 

sensors (informative prior setup), SNR = 10 dB . 

Fusion Rule Pow-Law, Exp-Law, Pow-Law, Exp-Law, 

P e,k = 0 P e,k = 0 P e,k = 0 . 1 P e,k = 0 . 1 

�G 0 .99 0 .99 0 .83 0 .83 

�B 0 .99 0 .99 0 .84 0 .85 

�GB1 0 .99 0 .99 0 .83 0 .85 

�GB2 0 .99 0 .99 0 .84 0 .83 

�BLOD 0 .98 0 .94 0 .78 0 .64 

�CR 0 .97 0 .90 0 .72 0 .47 

�GLOD 0 .98 0 .98 0 .78 0 .78 

s  

s  

s  

2  

C

5

 

c  

(  

t  
all the sensors, i.e. P e,k = P e , k ∈ K, and we set P e = 0 . 1 . From both

figures it is apparent a general degradation of performance due

to imperfect reporting channels. Additionally, it can be observed

a general decrease of the performance spread for the considered

rules. The reason is that a non-zero BEP tends to smooth the spa-

tial signature of the AAF. Additionally, the equal BEP assumption

leads to a similar relative confidence of each sensor local decision.

Therefore the relative performance loss incurred by CR decreases. 

Finally, in Tables 2 and 3 , we report a comparison of all the pre-

sented rules in terms of P d , 0 (assuming K = 64 and SNR = 10 dB )

for the relevant scenario of P f, 0 = 10 −2 , in both the previously con-
idered cases of uninformative and informative prior ( p ( x T )), re-

pectively. As an example, in Table 2 when P e,k = 0 and the as-

umed AAF follows the exponential law, G-LOD is able to provide a

6% improvement of the detection rate with respect to B-LOD and

R. 

. Conclusions and future directions 

In this paper we tackled distributed detection of a non-

ooperative target. Sensors measure an unknown random signal

embedded in Gaussian noise) with an AAF depending on the dis-

ance between the sensor and the target (unknown) positions. Each
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ocal decision, based on (local) energy detection, is then sent to a

C for improved detection performance. The focus of this work has

oncerned the development of practical fusion rules at the FC. To

his end, we first focused on the scenario where the emitted power

s available at the FC and analyzed fusion rules based on GLRT and

ayesian approaches. Then we moved to the more realistic case of

nknown target location ( x T ) and power ( σ 2 
s ). Such case is typical

hen detecting non-cooperative targets. The present problem has

een formally cast as a one-sided hypothesis testing with nuisance

arameters (i.e. x T ) which are present only under H 1 (viz. target-

resent hypothesis). For the resulting hypothesis testing, we ana-

yzed several fusion rules based on: ( i ) GLRT, ( ii ) Bayesian approach

nd ( iii ) hybrid combinations of the two. All these rules have been

hown to achieve similar performance in all the scenarios being

onsidered. Unfortunately, they all require a grid-based implemen-

ation on the Cartesian product of optimization (integration) space

f x T and σ 2 
s . Then, with the intent of reducing the computa-

ional complexity required by all these approaches, we proposed

ther two (sub-optimal) fusion rules built upon the LOD frame-

ork [22] and based on the following specific rationales: 

• B-LOD: x T is treated as a random parameter with a prior pdf

p ( x T ), while σ 2 
s is tackled under the LOD framework; 

• G-LOD: A generalized version of LOD (based on [23] ), arising

from maximization (w.r.t. nuisance parameter x T ) of a family of

LOD decision statistics obtained by assuming x T known; 

The aforementioned rules present reduced complexity with re-

pect to the previous rules, all requiring a grid-based search or in-

egration with respect to both x T and σ 2 
s . More specifically, B-LOD

etains a linear complexity in the number of sensors (as the sim-

le CR), while G-LOD is based on a (reduced) grid search which

nly requires optimization w.r.t. x T . Additionally, G-LOD has been

hown to outperform CR in all the considered cases and to incur in

 moderate performance loss with respect to other rules requiring

rid implementation on both parameters. Differently, B-LOD has

een shown to provide a significant gain over CR only when the

rior pdf of x T is informative enough. 

All the considered rules have been extended to the case of im-

erfect reporting channels, modeled as BSCs with corresponding

EPs P e, k assumed known at the FC. It has been demonstrated that

nly a slight modification of their expressions is required in order

o account for this additional uncertainty, whereas it has been ob-

erved that non-zero BEPs tend to smooth the spatial signature de-

ermined by the AAF and thus to reduce the gain obtained by all

he rules exploiting spatial information of the target w.r.t. CR. 

Future works will include the design and analysis of fusion

ules based on soft-decisions (i.e. multi-bit quantization) from the

ensors, as well as the problem of detecting time-evolving (diffu-

ive) sources with possibly moving sensors. Both the cases of coop-

rative and uncooperative targets are of interest. Furthermore, the

ase of uncertain sensors positions will be tackled in comparison

o the well-known concept of scan statistics [18] . Finally, robust

esign of fusion rules accounting for uncertainties at the reporting

hannels (i.e. unknown BEPs) will be also considered. 

ppendix 

erivation of Bayesian LOD 

In this Appendix, we derive the explicit expression of the LOD

22] based on a prior distribution assumption for the target posi-

ion x T , that is based on Eq. (3.22) . To this end, starting from the

mplicit form in (3.45) , we first concentrate on obtaining the closed

orm of 
∂ ln [ P(d|H 1 ;θ ) ] 

∂θ
. The latter term is obtained recalling that: 

ln [ P (d|H 1 ; θ ) ] 
= ln 

[ ∫ K ∏ 

k =1 

P d,k (x T , θ ) d k 
[
1 − P d,k (x T , θ ) 

](1 −d k ) 
p( x T ) dx T 

] 

. (5.1) 

he derivative of the log-pdf can be thus obtained in closed form

s: 

∂ ln [ P (d|H 1 ; θ ) ] 

∂θ

= 

∫ ∂P(d|H 1 ;x T ,θ ) 
∂θ

p(x T ) dx T ∫ ∏ K 
k =1 P d,k (x T , θ ) d k 

[
1 − P d,k (x T , θ ) 

](1 −d k ) 
p( x T ) dx T 

, (5.2) 

here we have interchanged the order of derivative and integration

t the numerator. Also, the derivative within the integral in (5.2) at

he numerator can be evaluated in explicit form as: 

∂P (d|H 1 ; x T , θ ) 

∂θ
= 

( 

K ∏ 

k =1 

P d,k (x T , θ ) d k 
[
1 − P d,k (x T , θ ) 

](1 −d k ) 

) 

×
K ∑ 

k =1 

d k − P d,k (x T , θ ) 

P d,k (x T , θ ) 
[
1 − P d,k (x T , θ ) 

] ∂P d,k (x T , θ ) 

∂θ
. 

(5.3) 

or the considered model in Eq. (2.8) , the derivative of the P d, k 

.r.t. θ is given explicitly as: 

∂P d,k (x T , θ ) 

∂θ
= 2 

∂ 

∂θ
Q 

( √ 

γk 

σ 2 
w,k 

+ θ g 2 (x T , x k ) 

) 

(5.4) 

= p w 

( √ 

γk 

σ 2 
w,k 

+ θ g 2 (x T , x k ) 

) √ 

γk g 
2 (x T , x k ) [

σ 2 
w,k 

+ θ g 2 (x T , x k ) 
]3 / 2 . (5.5) 

valuating the derivative of the log-pdf in (5.2) at θ = θ0 (which

orresponds to null hypothesis H 0 , see Eq. (3.8) ), leads to 

∂ ln [ P (d|H 1 ; θ ) ] 

∂θ

∣∣∣∣
θ= θ0 

= 

∫ ∂P(d;H 1 , x T ,θ ) 
∂θ

∣∣
θ=0 

p(x T ) dx T ∏ K 
k =1 (P f,k ) d k (1 − P f,k ) (1 −d k ) 

, (5.6) 

here, exploiting (5.3) , we obtain: 

∂P (d|H 1 ; x T , θ ) 

∂θ

∣∣∣∣
θ= θ0 

= 

( 

K ∏ 

k =1 

(P f,k ) 
d k 
[
1 − P f,k 

](1 −d k ) 

) 

×
K ∑ 

k =1 

d k − P f,k 

P f,k 
(
1 − P f,k 

) ∂P d,k (x T , θ ) 

∂θ

∣∣∣∣
θ= θ0 

, 

(5.7) 

nd in turn (cf. Eq. (5.5) ) 

∂P d,k (x T , θ ) 

∂θ

∣∣∣∣
θ= θ0 

= p w 

( √ 

γk 

σ 2 
w,k 

) √ 

γk g 
2 (x T , x k ) (

σ 2 
w,k 

)3 / 2 
. (5.8) 

hen, exploiting the appropriate substitutions, we obtain: 

∂ ln [ P (d|H 1 ; θ ) ] 

∂θ

∣∣∣∣
θ= θ0 

= 

K ∑ 

k =1 

d k − P f,k 

P f,k 
(
1 − P f,k 

) p w 

( √ 

γk 

σ 2 
w,k 

) 

×
√ 

γk (
σ 2 

w,k 

)3 / 2 

(∫ 
g 2 (x T , x k ) p(x T ) dx T 

)
. 

(5.9) 

ow we show how to obtain the explicit form of the FI evaluated

t θ0 . First, we start from the common definition: 

(θ0 ) = E P(d|H 0 ) 

⎧ ⎨ ⎩ 

( 

∂ ln [ P (d| H 1 ; θ ) ] 

∂θ

∣∣∣∣
θ= θ0 

) 2 
⎫ ⎬ ⎭ 

. (5.10) 
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Since the elements d k , k = 1 , . . . , K, are uncorrelated it holds

that: 

I(θ0 ) = 

K ∑ 

k =1 

E 

{ (
d k − P f,k 

)2 
} 

P 2 
f,k 

(
1 − P f,k 

)2 
p 2 w 

( √ 

γk 

σ 2 
w,k 

) 

γk (
σ 2 

w,k 

)3 

×
(∫ 

g 2 (x T , x k ) p(x T ) dx T 

)2 

. (5.11)

Evaluating the expectation inside the above equation, provides the

explicit form of I ( θ0 ): 

I(θ0 ) = 

K ∑ 

k =1 

1 

P f,k 
(
1 − P f,k 

) p 2 w 

( √ 

γk 

σ 2 
w,k 

) 

γk (
σ 2 

w,k 

)3 

×
(∫ 

g 2 (x T , x k ) p(x T ) dx T 

)2 

. (5.12)

Substitution of closed forms of Eqs. (5.9) and (5.12) into the im-

plicit form in (3.23) , provides the explicit expression reported in

Eq. (3.25) . 

Derivation of Generalized LOD 

In this Appendix, we derive the explicit expression of the G-

LOD proposed by Davies. To this end, we concentrate on find-

ing the explicit form of LOD fusion rule [22] assuming x T known.

Once obtained, the explicit expression will clearly depend on x T .

Such expression will be then plugged in the maximization of Eq.

(3.29) to obtain the final statistic. First, we observe that: 

∂ ln P (d|H 1 ; x T , θ ) 

∂θ
= 

K ∑ 

k =1 

d k − P d,k (x T , θ ) 

P d,k (x T , θ ) 
[
1 − P d,k (x T , θ ) 

] ∂P d,k (x T , θ ) 

∂θ
,

(5.13)

where 
∂P d,k (x T ,θ ) 

∂θ
is defined as in Eq. (5.5) . Setting θ = θ0 , the above

term reduces to: 

∂ ln P (d|H 1 ; x T , θ ) 

∂θ

∣∣∣∣
θ= θ0 

= 

K ∑ 

k =1 

d k − P f,k 

P f,k (1 − P f,k ) 
p w 

( √ 

γk 

σ 2 
w,k 

) √ 

γk g 
2 (x T , x k ) (

σ 2 
w,k 

)3 / 2 
, (5.14)

where we exploited the definition in Eq. (5.5) . Similarly, exploit-

ing (conditional) independence of the decisions d k , k = 1 , . . . , K, we

obtain: 

I(x T , θ ) = 

K ∑ 

k =1 

I k (x T , θ ) , (5.15)

where we have denoted with I k ( x T , θ ) the contribution of k th to

the FI, that is: 

I k (x T , θ ) = E 

{ (
∂ ln [ P (d k |H 1 ; x T , θ ) ] 

∂θ

)2 
} 

(5.16)

= 

E 

{ [
d k − P d,k (x T , θ ) 

]2 } 
P d,k (x T , θ ) 2 

[
1 − P d,k (x T , θ ) 

]2 (∂P d,k (x T , θ ) 

∂θ

)2 

(5.17)

= 

1 

P d,k (x T , θ ) 
[
1 − P d,k (x T , θ ) 

](∂P d,k (x T , θ ) 

∂θ

)2 

(5.18)

where, in obtaining the last line we have explicitly evaluated the

expectation in Eq. (5.17) . Then, substitution θ → θ0 in I ( x T , θ ) pro-

vides: 

I(x T , θ0 ) = 

K ∑ 

k =1 

I k (x T , θ0 ) (5.19)
 

K ∑ 

k =1 

1 

P f,k 
[
1 − P f,k 

] p 2 w 

( √ 

γk 

σ 2 
w,k 

) 

γk g 
4 (x T , x k ) (
σ 2 

w,k 

)3 
. (5.20)

xploiting Eqs. (5.20) and (5.14) into (3.29) , provides the final ex-

ression in (3.31) . 
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